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I. INTRODUCTION 

I 
El 

The neu t r a l i za t ion  of the  high perveance ion  beams required f o r  
e l e c t r i c a l l y  propelled spacecraf t  has been a subjec t  of continuing 
i n t e r e s t  i n  t he  development of these ion th rus to r s .  This neut ra l iza-  
t i o n  has been examined i n  laboratory environments i n  the  e a r l i e r  experi-  
ments and, more recent ly ,  i n  the f i r s t  space f l i g h t  t e s t  of an ion 
t h r u s t o r .  Ef fec t ive  neu t r a l i za t ion  of t he  ion stream has been demon- 
s t r a t e d  i n  t h i s  l a t t e r  t e s t i n g  conditfon a s  wel l  as  i n  the  laboratory 
experiments. This paper w i l l  review Environmental ef . fects  as they have 
influenced experiments on ion t h r u s t  beams i n  three  p a r t i c u l a r  environ- 
mental configurat ions.  
( 4 m )  neu t r a l i za t ion  experiments with the  electron-bombardment mercury 
ion th rus to r ,  the  l a rge  chamber ( 2 5  m) experiments with the  contact  
ion iza t ion  cesium ion thrus tor ,  and the f l i g h t  t e s t  of t h e  electron-  
bombardment engine on the  NASA SERT I spacecraf t .  
a l s o  review some of t he  diagnost ic  techniques t h a t  have been employed 
and w i l l  consider fu r the r  diagnost ic  techniques, p a r t i c u l a r l y  those 
appl icable  f o r  space f l i g h t  t e s t s  of ion thrustorsJ 

These configurations a r e  the small: chamber 

The discussion w i l l  

11. SMALL CHAMBER NEUJLIZATION EXPERIMENTS: ELECTRON- 

BOMBARDMENT I O N  THRUSTOR 

The r e s u l t s  of the  neut ra l iza t ion  t e s t s  of  t h i s  electron-bombardment 
th rus to r  have been described i n  d e t a i l  i n  Refs. l a n d  2, and the  discus- 

* This work supported by NASA Lewis Research Center, Cleveland, Ohio 
under Contract NAS3-4114. 
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s ion  here w i l l  be pr imari ly  concerned with environmental d i f fe rences  
between t h i s  labora tory  t e s t i n g  a r r a y  and t h e  t r u e  space condi t ion.  
Two of the more obvious f ea tu res  present  i n  the  laboratory,  and absent  
i n  t h e  vehicular space environment, a r e  the  conducting boundaries t o  
the  vacuum t e s t i n g  chamber and t h e  r e s i d u a l  gas w i t h i n .  
boundaries support  e l e c t r i c  f i e l d s  through induced sur face  charges, 
absorb p a r t i c l e s  from the  plasma stream, and, t o  some measure, emit 
secondary p a r t i c l e s .  The r e s i d u a l  gas may i n t e r a c t  with the  ions and 
e lec t rons  i n  the  t h r u s t  beam, with ion-atom charge exchange and e lec t ron-  
atom e l a s t i c  and i n e l a s t i c  s c a t t e r i n g  being the  p r i n c i p a l  i n t e rac t ion  
mc hanisms . 

The conducting 

The neu t r a l i za t ion  experiments with t h e  mercury electron-bombardment 
ion th rus to r  (Kaufman engine) were c a r r i e d  out  i n  a vacuum chamber 
approximately 4 meters i n  length and 2 meters i n  diameter. 
configurat ion is shown i n  Fig.  1. The designat ion o f  a llsmallll 
chamber is  t o  d i s t ingu i sh  t h i s  experimental  a r r a y  from the " large" 
chamber configurat ion ( 8  m i n  diameter, 2 5  m i n  l eng th )  t o  be discussed 
i n  Section 111. Both t h e  diameter and the  length  of t he  vacuum chamber 
a r e  of i n t e r e s t .  The diameter of the  chamber provides the radial 
withdrawal of the  chamber boundaries from the  plasma beam, with a 
coupling between the  plasma beam and t h e  boundaries which diminishes 
f o r  an  increased chamber diameter. 
i n  tu rn ,  provides the a x i a l  withdrawal of t he  c o l l e c t i n g  boundaries 
from t h e  i o n  source, and, f o r  increased chamber lengths ,  increases  
the  time during which the  plasma is i s o l a t e d  from the  c o l l e c t i n g  
boundaries i n  the  pulsed-beam tes ts  of t he  n e u t r a l i z a t i o n  system. 

The t e s t  

The length  of the  vacuum chamber, 

The pulsed-beam technique i s  a method of i s o l a t i n g  t h e  plasma 
t h r u s t  beam from i t s  near environment, thereby minimizing the  r o l e  
of t h e  boundaries t o  the  t e s t i n g  chamber. 
i n  Ref. 3 .  A f u r t h e r  use of this  technique is  given i n  R e f .  4. I n  
the  pulsed beam s tudies ,  t he  ion acce le ra t ion  vol tage i s  pulsed on 
rap id ly ,  and the  neu t r a l i za t ion  of t he  ion  stream is  s tudied  during 
t h e  i n i t i a l  t ime-of - f l igh t  of t he  ions ac ross  t h e  source t o  c o l l e c t o r  
interspace.  During t h i s  per iod the re  i s  no d i r e c t  absorp t ion  of 
p a r t i c l e s  by the  boundaries, s o  t h a t  the r o l e  of t h e  sur faces  i s  reduced 
t o ,  a t  most ,  t h e  terminat ion of e l e c t r i c a l  l i n e s  of fo rce  from the  
plasma stream. This "displacement cur ren t"  con t r ibu t ion  is  monitored, 
i n  tu rn ,  by induction g r ids  t h a t  l i n e  t h e  t e s t i n g  chamber. 

I ts  i n i t i a l  use i s  descr ibed 

The r o l e  of the  r e s i d u a l  gas i n  t h e  t e s t i n g  chamber may be mini- 
mized, or eliminated, through the  maintenance of t he  chamber below 
the  " c r i t i c a l "  pressures .  
exchange in t e rac t ion  i s  t h a t  a t  which t h e  mean free path f o r  charge 
exchange between the ions i n  t h e  t h r u s t  beam and t h e  r e s i d u a l  atoms 
becomes comparable t o  the  source- to-co l lec tor  spacing. 
exchange of mercury ions on mercury atoms, t h i s  mean f r e e  pa th  i s  of 
the  order of 4 meters a t  pressures  of 2x10-5 Torr ,  and f o r  lower 

The c r i t i c a l  pressure i n  terms of t he  charge 

For t h e  charge 
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chamber pressures  than t h i s ,  t he  charge 
diminishing importance. The " c r i t i c a l "  
atom e l a s t i c  s c a t t e r i n g  in t e rac t ions  is 

exchange in t e rac t ion  is  of 
pressure i n  terms of e lec t ron-  
t h a t  a t  which the  mean f r e e  

path f o r  l a rge  angle sca t t e r ings  becomes of t h e  order of t he  dimensions 
of the  plasma stream. For sca t t e r ing  cross  sec t ions  of the  order of 
10-16 square centimeter,  t h i s  mean f r ee  path i s  of t he  order of 1 meter 
a t  ~ x L O - ~  Torr. The c r i t i c a l  pressure i n  terms of electron-atom in-  
e l a s t i c  c o l l i s i o n s  is  somewhat l e s s  w e l l  defined but  would, presumably, 
be t h a t  pressure a t  which energy loss rates f o r  e lec t rons  i n  these  
c o l l i s i o n s  become comparable with the  r a t e s  of energy lo s ses  (or ga ins )  
from ion-electron in t e rac t ions  i n  the  plasma stream. 
however, a thorough experimental examination of t he  energy interchange 
mechanisms between ions and e lec t rons  i n  these  plasma t h r u s t  beams. I n  
the  experiments t o  be discussed i n  Section 111, t he  electron-ion i n t e r -  
a c t i o n  appears t o  l ead  t o  a rap id  cooling of t he  e lec t rons  a f t e r  t h e i r  
i n j e c t i o n  i n t o  the  ion stream. I f  t h i s  condi t ion should hold t r u e  
general ly ,  then  the  pressure requirements i n  terms of t hese  i n e l a s t i c  
i n t e rac t ions  a r e  l e s s  s t r ingen t  than those of charge exchange and e l a s t i c  
s c a t t e r i n g .  

There has not  been, 

I n  the  experiments de t a i l ed  i n  Refs. 1 and 2, t h e  chamber pressure 
w a s  maintained a t  lX10-5 Torr or less. 
-400 milliamperes, t he  use of l a rge  l iquid-nitrogen-cooled cryopumping 
sur faces  was required t o  hold the  chamber pressure i n  the  range below 
M O - ~  Torr. From t h i s ,  it may be seen t h a t  any substant ive i n t e r -  
a c t i o n  between the  plasma stream and the r e s i d u a l  gas has been elimin- 
a ted ,  and t h e  reduct ion of the  pressure t o  t h e  r e s i d u a l  backgrounds 
i n  space should not produce any s ign i f i can t  va r i a t ions  i n  the  observed 
behavior of the  t h r u s t  beam. 

A t  full beam curren ts  of 

The e l e c t r i c a l  i n t e rac t ion  between the  plasma beam and the  chamber 
boundaries w a s  s i m i l a r l y  small and may be neglected.  
of t h e  plasma column near the ion source, t he  capacitance per u n i t  
l ength  between the  plasma beam and the chamber w a l l s  i s  -20 micro- 
microfarad per meter, leading t o  an induced charge of 20 micromicrocoulombs 
per meter per v o l t  of p o t e n t i a l  difference between t h e  plasma column 
and the  boundaries. 
2500-electron-volt ion energy, t he  pos i t ive  charge per u n i t  length i n  the  
plasma beam i s  8X106 micromicrocoulombes per meter. By proper adjustment 
of t h e  plasma p o t e n t i a l  it i s  possible f o r  t h e  induced charge along the  
boundaries t o  become of t he  magnitude of t he  ion and e l ec t ron  
charge colonies  i n  the plasma stream. I n  the  regions downstream from t h e  
ion source, t h i s  i s o l a t i o n  i s  l e s s  complete because of t h e  outward d iver -  
gence of t he  plasma column (from e l e c t r o s t a t i c  l ens  e f f e c t s  i n  the  ion 
acce le ra t ion  reg ion) .  This radial  spreading of the ion beam diminishes 
the  separa t ion  from t h e  plasma t o  the boundaries with a corresponding 
increase i n  the capacitance between the t h r u s t  beam and t h e  vacuum chamber 

For those sec t ions  

For a f u l l  beam cur ren t  of 400 milliamperes a t  



w a l l s .  However, by using a chamber of moderate diameter, the  induced 
charge per u n i t  length remains l e s s  than 
per u n i t  length i n  the plasma column, even i n  these downstream, diverged 
beam regions.  

of t h e  ions and e lec t rons  

The resu l t s  of the neu t r a l i za t ion  t e s t s  with the  mercury e lec t ron-  
bombardment th rus to r ,  taken from Ref. 2 ,  a r e  shown again i n  Fig.  2 .  For 
t h e  neu t r a l i ze r  configuration that w a s  l a t e r  used i n  the space f l i g h t  
t e s t ,  the plasma po ten t i a l ,  measured a t  a downstream point ,  w a s  -9 v o l t s  
pos i t i ve  with respec t  t o  the n e u t r a l i z e r .  These p o t e n t i a l  d i f fe rences  
a r e  taken f r o m  emissive probe data, with an accuracy of measurement of 
-0.5 vol t  i n  t h a t  experimental condi t ion.  S igni f icant ly ,  t he re  were no 
observable d i f fe rences  between the pulsed beam operation of the 
neu t r a l i ze r  and the  s teady-s ta te  condi t ion that one obtained when the  
plasma beam w a s  d i r ec t ed  aga ins t  a f l o a t i n g  co l l ec to r .  
that a r e  withdrawn from the plasma column, observable d i f fe rences  do 
occur between these two periods,  but  f o r  t o t a l l y  immersed (and thus,  
t i g h t l y  coupled) neu t r a l i ze r s ,  t he  behavior i s  i d e n t i c a l  i n  the  two 
t e s t i n g  conditions.  This i s  fu r the r  evidence, then, of a neu t r a l i za t ion  
system which i s  well-coupled t o  the  plasma stream. 

For neu t r a l i ze r s  

I n  view of the int imate  coupling between the n e u t r a l i z e r  and t h e  
plasma beam, and i n  view of the very minor involvement of the  chamber 
boundaries and the  r e s idua l  gas i n  the  behavior of the  plasma beam, 
the re  i s  no a p r i o r i  reason t o  consider t h a t  the  neu t r a l i za t ion  of t he  
t h r u s t  beam would be adversely a f f ec t ed  i f  the  chamber walls were 
removed t o  i n f i n i t y  and the  chamber r e s i d u a l  gases reduced t o  the  
almost t o t a l  vacua of space. There a re ,  however, l i m i t a t i o n s  i n  t h i s  
small chamber experiment r e l a t i v e  t o  a t r u e  space t e s t .  The most 
notable  i s  t h a t  the  plasma column i s  i s o l a t e d  from i t s  labora tory  
environment for  periods of t h e  order of 200 microsecond or l e s s ,  and, i f  
some pa r t i cu la r  re laxa t ion  processes do occur over longer periods they 
would not have been observable i n  t h i s  4-meter geometry. Beyond t h i s ,  
there  a r e  other f ac to r s  such as t h e  absence i n  the  t e s t i n g  chamber of 
t he  d i lu t e  r e s i d u a l  plasmas t h a t  e x i s t  i n  the  near regions of t h e  Earth,  
and t h e  more complicated general  i n t e r a c t i o n  between t h e  plasma t h r u s t  
beam and the magnetic f i e l d  of the  Earth,  when the t h r u s t  beam i s  ex- 
hausted from a moving vehic le .  While these  l a t t e r  f a c t o r s  a r e  not  
e a s i l y  amenable t o  laboratory simulation, the extension of t he  i s o l a t i o n  
time of the plasma column from i ts  vacuum t e s t i n g  chamber may be c a r r i e d  
out through the use of l a r g e r  t e s t i n g  f a c i l i t i e s .  
performed i n  the  la rge  t e s t i n g  chamber a t  Lewis Research Center, and 
t h e i r  r e s u l t s  a r e  now discussed.  

These experiments were 
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111. LARGE CHAMBER NEUTRALIZATION EXPERIMENTS: CONTACT 

I O N I Z A T I O N  CESIUM I O N  THRUSTOR 

The l a rge  t e s t i n g  chamber a t  NASA Lewis Research Center, Cleveland, 
Ohio has a diameter of -8 meters and a length  of  -25 meters. For a pulsed 
beam experiment, t h i s  chamber length would provide, f o r  nominal ion 
acce le ra t ing  vol tages ,  an i s o l a t i o n  time almost an order of magnitude 
l a r g e r  than t h a t  a t t a i n e d  i n  the smaller chamber experiments discussed 
i n  Sect ion 11. Relaxation processes in  the  mill isecond range would be 
observable, i f ,  indeed, processes with these  long-time constants should 
e x i s t  i n  these  plasma columns. 

Because the  diagnosis would be d i rec ted  a t  the  possible  exis tence 
of second-order va r i a t ions  i n  the  plasma column behavior as funct ions of 
the  plasma column length,  a contac t  ionizat ion source w a s  s e l ec t ed  f o r  
the ion beam generat ion.  The experiments a r e  an extension of the  e a r l i e r  
t e s t s  described i n  Ref. 3. The plasma produced by the  contact  ion iza t ion  
source i s  very quiescent,  and measurements of plasma p o t e n t i a l  and 
e l ec t ron  temperature may be performed with an accuracy t h a t  i s  subjec t  
only t o  the  inherent  l imi t a t ions  of the diagnost ic  instruments.  For 
p o t e n t i a l  measurements with emissive probes, t h i s  accuracy i s  of t h e  
order of 0.01 t o  0.03 v o l t  i n  the  plasma dens i ty  region above lo7 ions 
per cubic ~ e n t i m e t e r , ~  while t he  Langmuir probe accuracy i n  the  
measurement of e l ec t ron  temperatures i s  estimated a t  -200' K.  The ion 
source perveance w a s  -2000 nanopervs, so t h a t  the  neu t r a l i za t ion  experi-  
ments were conducted with a "broad" beam, high perveance th rus to r .  
Neut ra l iza t ion  w a s  by an immersed hot wire .  

The experimental a r r a y  used i n  these l a rge  chamber experiments 
i s  shown i n  Figs .  3 and 4. 
p resents  i n  d e t a i l  t he  r e s u l t s  of the experiments. 
of these  t e s t s ,  appl ied  t o  the present discussion,  was the  invariance 
i n  the  plasma behavior through these longer i s o l a t i o n  per iods.  
po ten t i a l ,  t he  densi ty ,  and the  e lec t ron  temperature a t  a f ixed  probe 
loca t ion  i n  the  plasma column exhibi ted no observable timewise va r i a -  
t i ons  as the  plasma f r o n t  moved fur ther  downstream from the  probe. 
those probe loca t ions  near t he  ion source, the  time i n t e r v a l  from the 
a r r i v a l  of  t he  plasma f r o n t  a t  the  probe u n t i l  the  plasma a r r i v e d  a t  the  
c o l l e c t o r  a t  the  far end of t h e  chamber i s  g rea t e r  than 1 millisecond. 
This r e s u l t  then confirms t h a t  there  a r e  no s i g n i f i c a n t  r e l axa t ion  
processes with c h a r a c t e r i s t i c  times of t he  order of a mil l isecond.  

These f igures  a r e  drawn from Ref. 6, which 
The important aspec t  

The 

For 

The plasma columns obtainable  even i n  t h i s  t e s t i n g  configurat ion a r e  
not ,  of course, those i n f i n i t e l y  long columns t h a t  w i l l  be obtained i n  
the  vehicu lar  space environment. 
however, for the  ion dens i ty  within the plasma column t o  have diminished 
t o  values  comparable t o  t h e  ambient plasma dens i t i e s  i n  the  ionosphere. 

They a r e  of g r e a t  enough length,  
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For the  average ion beam divergence angle of -3' i n  these cesium ion beams, 
t he  plasma densi ty  diminishes from -1010 ions per cubic centimeter i n  the  
source region t o  -lo6 ions per cubic centimeter a t  poin ts  of the  order of 
20 t o  25 meters downstream. Such a beam then, would have almost merged 
i n t o  the ambient plasma of t he  F2 l aye r . ?  For regions of g rea t e r  a l t i t u d e ,  
t h i s  ambient plasma dens i ty  diminishes, which requi res  a longer column 
length  f o r  the  t h r u s t  beam plasma t o  merge with the space plasma. 
merging points ,  however, would d i f f e r  by only an order of magnitude fo r  a 
wide range of vehic le  a l t i t u d e s ,  and the  exis tence of very e f f e c t i v e l y  
neut ra l ized  plasma columns i n  t h i s  present  t e s t i n g  geometry i s  s t rong  
evidence t h a t  the e f fec t iveness  of the  neu t r a l i za t ion  would not  be 
diminished i n  any way i n  the  i n f i n i t e  geometries of space. The conclu- 
s i v e  evidence, of course, would be suppl ied through a vehicular  space 
tes t  of an ion engine. This space t e s t  w a s  performed and is described 
In  the  following sec t ion .  

These 

IV. NEUTRALIZATION EXPERIMENTS IN SPACE: 

SERT I I O N  ENGINE TEST 

The S?3RT I spacecraf t  w a s  launched on Ju ly  20, 1964, from Wallops 
Is land,  Virginia .  
NASA Lewis Research Center.  The four-s tage Scout launch vehic le  boosted 
the payload i n t o  a b a l l i s t i c  t r a j e c t o r y  with a peak a l t i t u d e  of 
n a u t i c a l  miles and with a t o t a l  f l i g h t  time of -40 minutes above 250 
n a u t i c a l  miles. The spacecraf t  possessed both a cesium contac t  ioniza-  
t i o n  th rus to r  and an electron-bombardment mercury ion t h r u s t o r .  The 
electron-bombardment t h r u s t o r  was i d e n t i c a l  t o  that t h r u s t o r  which w a s  
t e s t e d  i n  t he  experiments described i n  Sect ion 11, and it is  the 
neu t r a l i za t ion  behavior of t h i s  t h r u s t o r  t h a t  w i l l  be discussed i n  
t h i s  sec t ion .  

This f l i g h t  t e s t  w a s  under the  d i r ec t ion  of t he  

-2100 

A de ta i led  treatment of t he  f l i g h t  package and of t he  space f l i g h t  
r e s u l t s  i s  given i n  Refs. 8 and 9.  The discussion here  w i l l  review 
b r i e f l y  the methods by which the t h r u s t  and the  beam power were de te r -  
mined, and w i l l  then consider,  i n  more d e t a i l ,  the  information fu r -  
nished by the  rotating-vane e l e c t r i c  f i e l d  s t r eng th  meter. 

A.  Thrust and Beam Power Measurements 

The SERT I spacecraf t  i s  shown i n  Fig.  5. The payload was sp in  
s t a b i l i z e d  with the sp in  induced by the  fou r th  s tage  rocke t .  
deployment of t he  ion th rus to r s ,  t h e  s p i n  r a t e  of the  vehic le  w a s  
-85 revolutions per minute about the  sp in  a x i s .  
measured by two separate  s o l a r  de t ec to r s .  
w a s  small, and fu r the r  damping occurred during t h e  f l i g h t  per iod.  

After  t he  

This sp in  r a t e  W a s  
The i n i t i a l  precession angle 
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The t h r u s t  of t he  electron-bombardment engine ac t ed  t o  increase the  
sp in  r a t e  of the  vehic le .  The measured change i n  the  sp in  per iod of the  
vehic le  from the  s o l a r  detectors ,  together with the known moment of 
i n e r t i a  of the vehic le  about the spin ax i s  and the  known moment arm of 
the  t h r u s t  beam about the  sp in  ax i s  were used i n  the  ca l cu la t ion  of t he  
engine t h r u s t .  
vehic le  from a radial  accelerometer allows an a d d i t i o n a l  determination 
of t he  engine t h r u s t .  The peak value of t h i s  de l ivered  t h r u s t  w a s  
6 millipounds, and the t o t a l  increment increase i n  the  vehic le  sp in  was 
10 rpm. 

A f u r t h e r  measure of the angular acce le ra t ion  of t he  

The measured parameters of t he  ion t h r u s t o r  include discharge cur- 
r e n t  and discharge p o t e n t i a l  i n  the electron-bombardment chamber, a r c  
chamber magnetic f i e l d  cur ren t ,  ion acce lera t ion  vol tage,  t o t a l  ion 
source cur ren t ,  acce l e ra to r  dra in  current ,  and n e u t r a l i z e r  cur ren t .  
From these  measured cur ren ts  and voltages,  the de l iverable  t h r u s t  from 
the  ion engine, assuming pe r fec t  neu t r a l i za t ion ,  may be ca lcu la ted .  
With s u i t a b l e  cor rec t ions  f o r  the  f r a c t i o n  of doubly charged ions,  t he  
average divergence angle of t he  accelerated ions,  and the  spurious 
dra in  cur ren ts  from the  neu t r a l i ze r  t o  t h e  ion source r e g i ~ n , ~  t h i s  
ca lcu la ted  t h r u s t ,  when per fec t  neu t r a l i za t ion  is  assumed, i s  i n  agree- 
ment with the  measured values of t h e  t h r u s t  wi th in  5 percent .  

This c lose  agreement between the ca l cu la t ed  and measured values  
of t h r u s t  i s  conclusive evidence that ion beams can be e f f e c t i v e l y  
neut ra l ized  i n  the  i n f i n i t e  geometries of space.  The quant i ty  which 
i s  s p e c i f i c a l l y  determined by t h i s  experiment i s  i l l u s t r a t e  i n  Fig.  6, 
and i s  the  ne t  ion acce le ra t ion  ve loc i ty  k(Vo - VP)/&.'.T2, where 
Vo i s  the  ion source vol tage and Vp is  e p o t e n t i a l  i n  t he  plasma 
t h r u s t  beam. "he poss ib le  5-percent d i f fe rence  i n  measured and calcu- 
l a t e d  t h r u s t  leads t o  a possible  range of -10 percent i n  the  n e t  ion 
acce le ra t ion  energy e(Vo - V p ) .  
of 2 . 5  k i l o v o l t s ,  t h i s  10-percent range corresponds t o  a poss ib le  range 
of -250 v o l t s  i n  the  p o t e n t i a l  of the plasma r e l a t i v e  t o  the  n e u t r a l i z e r .  
I n  the  experiments described i n  Section 11, t h i s  plasma p o t e n t i a l  has 
been determined by emissive probe measurement t o  -0.5 v o l t ,  s o  t h a t  t he  
space f l i g h t  data ,  though it provides an assurance t h a t  t he  neu t r a l i za -  
t i o n  is  pe r fec t  within,  a t  most, e f fec ts  of second order ,  does not  a c t  
as a d i r e c t  check aga ins t  t he  laboratory measurements of plasma poten- 
t i a l .  Instruments t h a t  w i l l  provide such a d i r e c t  check f o r  i n - f l i g h t  
performance are discussed i n  Section V .  

For t h e  employed ion source vol tage 

A f u r t h e r  check on t h e  effect iveness  of the  ion beam neu t r a l i za -  
t i o n  i s  provided by the  hot-wire power dens i ty  probe measurements. 
This probe, described i n  Ref. 10, provides a two-dimensional map of the  
ion beam power dens i ty  i n  the  ion t h r u s t  beam. Te t o t a l  beam power 
measurements from t h i s  probe agree with the  ca l cu la t ed  t o t a l  beam 



G 

B. Rotating-Vane Elec t r ic -Fie ld  Strength Meter 

1. General considerat ions 

The rotating-vane E-f ie ld  meter cons is ted  of 3 s t a t iona ry  vanes which 
were a l t e r n a t e l y  shielded and exposed by a s e t  of 3 similar vanes t h a t  
ro t a t ed  a t  8000 rpm. 
R e f .  11. The induced cur ren t  that flows t o  the  sur face  of t he  s t a t o r  
vanes i f  an e l e c t r i c  f i e l d  i s  present  on the  sur face  of t h e  v e h i l  
provides a 400 cps s igna l  which i s  amplified by a s o l i d - s t a t e  a l t e rna t ing -  
cur ren t  amplif ier  and then commutated i n t o  the  telemetry u n i t .  
t h i s  vane r o t a t i o n  speed, the induced cur ren t  dens i ty  i s  3.5X10'11 
amperes per square centimeter f o r  an imposed e l e c t r i c  f i e l d  s t r eng th  
of 1 v o l t  per cent imeter .  
s ens i t i ve  sca l e  the  minimum f i e l d  s t r eng th  t h a t  m y  be detected i s  
-2 v o l t s  per cent imeter .  

The instrument i s  similar t o  t h a t  described i n  

For 

For t he  ampl i f ica t ion  provided on the  most 

The rotating-vane E-meter i s  s e n s i t i v e  t o  some degrading e f f e c t s  
t h a t  may occur even i n  the  labora tory  environment. One such e f f e c t  
a r i s e s  i f  a contact  p o t e n t i a l  d i f fe rence  e x i s t s  between the  forward 
sur face  of the  s t a t o r  vanes and t h e  back sur face  of t he  r o t o r  vanes. 
For a vane spacing of 3 mil l imeters ,  a contac t  p o t e n t i a l  of 1 v o l t  be- 
tween these two surfaces  would produce an  e f f e c t i v e  f i e l d  s t r eng th  of 
-3 v o l t s  per centimeter when the  s t a t o r  vanes a r e  sh ie lded  by the  r o t o r .  
For t he  SEXT I E- f i e ld  meter, these  vanes are gold p l a t ed  t o  minimize 
such contact  p o t e n t i a l  f i e l d s .  However, it i s  poss ib le  f o r  these  f i e l d s  
t o  e x i s t ,  and conditions under which they have been generated a r e  
described i n  Section IV.B.4 ( p .  1 2 ) .  

O f  more general  concern i s  the  d i f f i c u l t y  i n  r e l a t i n g  the  p o t e n t i a l  
of an i so l a t ed  vehicle  t o  the sur face  f i e l d  s t r eng th  ind ica ted  by the  
meter, i f  t he  vehicle  i s  within the  d i l u t e  plasma near  t h e  Earth.  
a vehic le  within a pe r fec t  vacuum, the  vehic le  p o t e n t i a l  i s  

For 

V, = Esrs  

where E, i s  t h e  sur face  f i e l d  s t r eng th  and rs i s  the  rad ius  of t he  
( sphe r i ca l )  vehic le .  For a vehic le  i n  a d i l u t e  plasma, however, the  near 
termination of l i n e s  of e l e c t r i c  force  upon plasma p a r t i c l e s ,  r a t h e r  than 
a t  i n f i n i t y  as i n  the  pe r fec t  vacuum case,  causes a higher e l e c t r i c  
f i e l d  s t rength  t o  e x i s t  for a given vehic le  p o t e n t i a l .  The cor rec t ion  
f a c t o r  f o r  t h i s  e f f e c t  may be almost an order of magnitude f o r  S m a l l  
veh ic le  poten t ia l s  and r e l a t i v e l y  dense ambient plasmas, such as those 
encountered i n  the F2 l a y e r .  Values of t h i s  co r rec t ion  a r e  given i n  
Ref. 12 f o r  a s e r i e s  of d e n s i t i e s  and k i n e t i c  temperatures i n  the  ambient 
plasma. For l a rge  vehic le  po ten t i a l s ,  t h e  sheath region surrounding 
the vehicle becomes very l a rge ,  and the  co r rec t ion  terms diminish.  
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A fu r the r  d i f f i c u l t y  c rea ted  by the presence of t he  ambient plasma 
occurs when t h e  ve loc i ty  of the  vehicle begins t o  exceed the thermal 
v e l o c i t i e s  of t he  ions i n  the  space plasma. For vehic les  i n  the  lower 

general ly  port ions of  t h e  ionosphere, the condition vs >> v+ 

e x i s t s .  For such a circumstance, a wake s t r u c t u r e  e x i s t s  about the  
vehicle ,  and t h e  sheath dimensions and e l e c t r i c  f ie lds  may vary s i g n i f i -  
can t ly  from one port ion of the  vehicle t o  another.  
i l l u s t r a t e d  i n  Fig. 7 .  Under such a condition, an E-meter on a vehicle  
t h a t  possesses both a sp in  and a motion through the  plasma would sense 
a time-varying e l e c t r i c  f i e l d ,  even f o r  a f ixed  vehicle  po ten t i a l .  
Examples of these sheaths and e l e c t r i c  f i e l d s  a r e  a l s o  given i n  Ref. 1 2 .  

1 thermal 

This condition i s  

A f i n a l  e f f e c t  from the  presence of a d i l u t e  space plasma is the  
cur ren t  of charged p a r t i c l e s  that may flow from t h e  plasma t o  the  
vehicle  skin.  These cur ren ts  a r e  complicated funct ions of t h e  vehicle  
po ten t i a l ,  plasma densi ty ,  plasma thermal energies,  and vehicle  motions 
r e l a t i v e  t o  the  plasma. For small negative vehicle  poten t ia l s ,  t he  
cur ren t  densi ty  of ions from the  plasma t o  t h e  forward portions of t he  
vehicle  is  -p+vs, where p+ is  the  space plasma dens i ty  and vs i s  
vehicle  ve loc i ty .  This would lead  t o  cur ren ts  of ampere per 
square centimeter f o r  t he  denser regions of t h e  F2 l ayer  (-lo6 
ions (cm3). 
po ten t i a l s ,  the  cur ren t  of e lec t rons  may be ampere per square 
centimeter because of t h e  grea te r  e lec t ron  mobili ty.  Large vehicle  
po ten t i a l s  r e l a t i v e  t o  t h e  space plasma tend t o  increase the  magnitudes 
of these  cur ren ts  s t i l l  fu r the r .  It is important t o  note that, under 
p a r t i c u l a r  conditions,  these  particle.  cur ren ts  from t h e  ambient plasma 
may exceed by many orders of magnitude the  induced cur ren t  densi ty  due 
t o  e l e c t r i c  f i e l d s  of the  order of a few v o l t s  per centimeter.  For 
t h i s  reason, a s igna l  from the E-meter may be predominantly the  r e s u l t  
of r e a l  p a r t i c l e  cur ren ts  and not the r e s u l t  of t he  displacement 
cur ren ts  associated with the  surface e l e c t r i c  f i e l d .  For the SERT I 
E- f i e ld  meter, t he  s e n s i t i v i t y  t o  these p a r t i c l e s  was diminished by a 
f ac to r  of -10 through the  use of gridded s t a t o r  vanes. 
t o  the  E-meter behavior when p a r t i c l e  cur ren ts  a r e  being delivered t o  
the  s t a t o r  vanes a r e  reviewed i n  Section IV.B.4  ( p .  1 2 ) .  

I n  t h i s  same F2 region and f o r  small pos i t ive  vehicle  

Tests r e l a t i n g  

One fu r the r  environmental fac tor  t h a t  may a f f e c t  the  E-meter 
behavior is  the  so l a r  u l t r a v i o l e t  rad ia t ion .  
l i b e r a t e d  from the  s t a t o r  vanes would cont r ibu te  t o  the  ove ra l l  cur ren t  
s i g n a l  t r e a t e d  by the  ampl i f ie rs .  For a s o l i d  s t a t o r  and r o t o r  vane 
construct ion,  t h i s  photoelectr ic  s igna l  should be e a s i l y  describable 
because of being suppressed f o r  a pos i t ive  vehicle  poten t ia l ,  being 
present  f o r  a negative vehicle  poten t ia l ,  and being absent from any 
areas  of the s t a t o r  vanes i n  the  ro to r  vane shadow. The circumstances 
f o r  a gridded s t a t o r  vanes placed before a s o l i d  backing p l a t e  and with 
a gridded r o t o r  vane a r e  much more involved as i s  i l l u s t r a t e d  i n  

Any photoelectrons 



Fig. 8 .  Because of these  complications, t he  E-meter response t o  u l t r a -  
v i o l e t  rad ia t ion  w a s  examined experimentally.  These tes t s  a r e  a l s o  
reviewed i n  Section IV.B.4. 

2 .  Observed E-meter s igna l s :  f l i g h t  da ta  

There a re  four  p a r t i c u l a r  periods during the  SERT I space t e s t  i n  
which the E-meter s i g n a l  w i l l  be discussed. These a r e  the  following: 

(1) Thrust beam o f f  

( 2 )  Thrust  beam on, no neu t r a l i ze r  b ias ,  upper p a r t  of t r a j e c t o r y  

( 3 )  Thrust beam on, neu t r a l i ze r  b iased  pos i t i ve  with r e spec t  t o  
vehic le  skin,  upper p a r t  of t r a j e c t o r y  

( 4 )  Thrust  beam on, no neu t r a l i ze r  b ias ,  r e - en t ry  port ion of 
t r a j e c t o r y  

The E-meter s igna l  from these four  periods i s  shown i n  Fig.  9. Several  
fea tures  a re  prominent. During the  f i rs t  period the re  is ,  e s sen t i a l ly ,  
no s igna l  from the  E-meter. During the  second period the  s i g n a l  i s  
observable and i s  pe r iod ica l ly  f luc tua t ing .  During the  t h i r d  per iod the  
E-meter s igna l  i s  nonfluctuat ing a t  approximately 0 .1  of f u l l - s c a l e  
amplitude on the  high s e n s i t i v i t y  s c a l e .  F ina l ly ,  i n  t h e  fou r th  period, 
t h e  s igna l  i s  again f l u c t u a t i n g  and i s  increased i n  i t s  magnitude from 
t h a t  of the second per iod.  

When the  E-meter s i g n a l  i s  examined r e l a t i v e  t o  the  r o t a t i o n  of 
t he  vehicle ,  it is found t h a t  t he  f luc tua t ing  s igna l s  i n  the second 
and four th  periods have a component of t h e  same period as the vehic le  
r o t a t i o n  (unpublished data  obtained from J. T. Bagwell and-W. H. Hawersaat 
by NASA Lewis Research Center) .  The dependence of t h i s  s i g n a l  as a 
funct ion of the  o r i en ta t ion  of t he  vehic le  i s  shown i n  Fig.  10. 
these  data the  E-meter s i g n a l  may be charac te r ized  as -"beam dependent," 
s ince  i t  i s  i n  exis tence f o r  those periods when a t h r u s t  beam i s  
generated by the  th rus to r  and f o r  those periods i n  which no neu t r a l i ze r  
b i a s  exists,  having the  per iod of the vehic le  r o t a t i o n .  

From 

3. Environmental e f f e c t s :  f l i g h t  operat ion 

The environmental e f f e c t s  discussed i n  Sect ion N.B.l ( p .  8 )  may 
now be examined as they may have cont r ibu ted  t o  t h e  f l i g h t  da ta  from 
the  E-meter. I n  addi t ion ,  t he re  are o ther  f ac to r s ,  due t o  the  presence 
of the  th rus t  beam, t h a t  should be considered. These s e v e r a l  e f f ec t s  
are  l i s t e d  i n  t a b l e  I .  
as Ts. 

The vehic le  r o t a t i o n  per iod i s  ind ica ted  there 



11 

TABLtE I. - ENVIRONMENTAL EFFECTS 

Yes 

Yes 

Yes 

No 

E f fec t  

TS 

TS 

0.5Ts 

-- 

Solar  photoe lec t r ic  

Variat ions i n  sheath thickness 

Plasma co l l ec t ion  cur ren ts  

v x B forces  
+ +  

Thrust beam-resident plasma 
in t e rac t ion  

dependent 
s i g n a l  

The s o l a r  photoe lec t r ic  cur ren ts  would produce a spin-dependent 
s i g n a l  w i t h  a d e f i n i t e  phase r e l a t i o n  t o  the  s o l a r  sensor s i g n a l  from 
which the  vehicle  r o t a t i o n  speed i s  determined. P a r t i c u l a r  condi t ions 
of vehic le  p o t e n t i a l  could suppress these photoe lec t r ic  cur ren ts  and 
thus el iminate  the  s o l a r  u l t r a v i o l e t  as a cont r ibu tor  t o  the  spin-  
dependent s igna l s  t h a t  have been observed. Variat ions i n  the sheath 
thickness  would appear f o r  small vehicle  po ten t i a l s  and f o r  vehic le  
speeds i n  excess of t he  ion thermal v e l o c i t i e s  i n  the  ambient plasma. 
These va r i a t ions  i n  sheath dimensions would diminish f o r  increased vehic le  
po ten t i a l s  and f o r  diminished plasma d e n s i t i e s .  Plasma co l l ec t ion  cur- 
r e n t s  would increase f o r  increased vehicle  po ten t i a l s ,  but  t he  var ia -  
t i ons  i n  these  cur ren ts  t o  an E-meter f o r  a vehicle  with a l a rge  poten- 
t i a l  would tend t o  diminish a s  the sheath dimensions increased and 
became more symmetric about the vehicle .  

The remaining e f f e c t s  have not  been previously discussed and a r e ,  
One of these  possible  in t e rac t ions  is  f o r  the  most pa r t ,  conjec tura l .  

denoted as '% X T'B forces  ."  
gradien ts  along t h e  a x i s  of t he  plasma stream were observed when the 
beam was d i r ec t ed  aga ins t  a t ransverse magnetic f i e l d .  
experiment, these grad ien ts  could r e s u l t  i n  a f luc tua t ing  p o t e n t i a l  a t  
t he  in j ec t ion  region of  the  column (assuming that the far downstream 
port ions of the  plasma column must match t o  the po ten t i a l  of t he  ambient 
plasma), which, i n  turn,  could cause the  vehic le  p o t e n t i a l  t o  exh ib i t  a 
spin-dependent f luc tua t ion .  
instance would be 0.5Ts. 

I n  the  experiments i n  Ref. 13, p o t e n t i a l  

I n  the  vehicular  

The period f o r  t h e  f luc tua t ion  i n  t h i s  

A f i n a l  possible  in te rac t ion ,  between the  t h r u s t  beam and the  
r e s iden t  plasma, should not  cause any spin-dependent f luc tua t ions  i n  
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vehic le  po ten t i a l ,  s ince  the  ambient p l a s m  should be i so t rop ic  except 
i n  the  very near neighborhood of the vehic le .  
s i g n a l  could r e s u l t  from t h e  in t e rac t ion  between the  t h r u s t  beam and 
the ambient plasma, however, i f  t h a t  i n t e rac t ion  r e s u l t e d  i n  the  
co l lec t ion ,  a t  the  vehicle  surface,  of  cur ren ts  from the  ambient plasma. 
Such a condition might a r i s e ,  f o r  example, if  cur ren ts  of secondary 
electrons from the  ion acce lera tor  p l a t e  en ter  t he  plasma t h r u s t  beam. 
Because of t h e i r  l a rge  energy ( seve ra l  keV), these  e lec t rons  a r e  not  
"bound" t o  the plasma column as the e lec t rons  from the  neu t r a l i ze r  a r e ,  
and they very rap id ly  leave the t h r u s t  beam and a r e  l o s t  i n  the  adjoin-  
ing ambient plasma. Thus, even though the neu t r a l i ze r  might be capable 
of per fec t  neut ra l iza t ion  of the  t h r u s t  beam, an imbalance i n  the  
o v e r a l l  cur ren ts  leaving the  vehicle  could r e s u l t .  The r e s u l t a n t  
small pos i t ive  s h i f t s  i n  the  vehicle  p o t e n t i a l  would e x t r a c t  a ne t  cur- 
r e n t  of e lectrons from the  space plasma i n  order t o  balance t h i s  ex- 
traneous cur ren t  of f a s t  secondaries leaving the acce le ra to r  p l a t e .  
Indeed, any condition t h a t  r e s u l t s  i n  a vehicle  p o t e n t i a l  other  than 
the f loa t ing  po ten t i a l  f o r  the  passive vehic le  could r e s u l t  i n  a spin-  
dependent current  co l l ec t ion  s i g n a l  from the  E-meter. 

A spin-dependent E-meter 

Throughout the  discussion it has been assumed t h a t  t he re  a r e  no 
d i r e c t  currents  between the  ion engine and the  E-meter. 
assumed because the ion engine and the  E-meter a r e  we l l  removed from 
each other on the spacecraf t  and because the  t h r u s t  beam i s  d i r ec t ed  
a t  180' t o  the  normal t o  the  E-meter. 

This has been 

O f  the  severa l  possible  e f f e c t s  presented i n  t a b l e  I, the  photo- 
e l e c t r i c  cur ren ts  and plasma co l l ec t ion  cur ren ts  could be t e s t e d  i n  
laboratory experiments. These a r e  reviewed i n  the  next s ec t ion .  

4 .  E-Field meter t e s t s  

An E-f ie ld  meter, i d e n t i c a l  t o  t h a t  instrument flown on the  
SERT I f l i g h t ,  was subjected t o  a s e r i e s  of laboratory t e s t s .  
t e s t s  included the response of t h e  meter t o  s t a t i c  and time-varying 
e l e c t r i c  f i e l d s ,  t o  plasma p a r t i c l e  cur ren ts ,  and t o  u l t r a v i o l e t  r ad ia -  
t i o n .  
i n  pa r t ,  i n  t h i s  sec t ion .  

These 

The experiments a r e  described i n  Ref. 1 4  and w i l l  be reviewed, 

The d i rec t -cur ren t  f i e l d  response was similar t o  that which was 
suppl ied with the  f l i g h t  instrument; it provided a f u l l - s c a l e  output 
s igna l  for  -30 and -90 v o l t s  per centimeter on the high and low 
s e n s i t i v i t y  channels, respec t ive ly .  Primary a t t e n t i o n  w a s  d i rec ted ,  
however, toward the  response t o  time-varying f i e l d s .  
f i e l d s ,  from 0.05 t o  15 cps were imposed on the  meter with c i r c u i t  
gain and phase l ag  determined. 
w a s  down -3 decibels  a t  1.5 cps, which i s  the  sp in  frequency of t he  

Small amplitude 

Rolloff i n  ga in  began a t  -0.5 cps and 
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SERT I vehic le .  Above t h i s  point  t he  response f e l l  o f f  a t  -20 dec ibe ls  
per decade. The E-meter s i g n a l  from 
e f f e c t s  t h a t  a r e  co r re l a t ed  with vehicle sp in  would then possess a phase 
l a g  of -40' and a reduced gain of -3 decibels  f o r  t he  f i r s t  harmonic 
component of 1.5 cps, with fu r the r  reductions i n  gain and g rea t e r  phase 
l ags  f o r  the  higher harmonics. Other t e s t s  with time-varying f i e l d s  
inves t iga ted  the  response t o  s t e p  functions,  l i n e a r l y  increasing and 
decreasing f i e l d s ,  and " r e c t i f i e d "  sine waves. 

Phase l a g  a t  1 .5  cps w a s  -40°. 

Another s e r i e s  of t e s t s  examined the  meter s e n s i t i v i t y  t o  p a r t i c l e  
cu r ren t s .  
described i n  Ref. 1 4  and as i l l u s t r a t e d  i n  Fig.  11. The argon ion 
plasma stream i n  t h i s  tunnel  simulates the  plasma dens i ty  and r e l a t i v e  
motion f o r  a vehic le  moving i n  the  regions of the  ionosphere below the  
protonosphere. The p a r t i c l e  cur ren t  dens i ty  w a s  var ied  and t h e  
s e n s i t i v i t y  of the  meter t o  cur ren ts  of  both ions and e lec t rons  w a s  
examined. When the  o v e r a l l  meter po ten t i a l  w a s  placed negative with 
respec t  t o  the  streaming plasma, only ions could be co l l ec t ed  by the  
vanes. For t h i s  condition, ion p a r t i c l e  cur ren t  dens i t i e s  of 
ampere per square centimeter were required t o  produce meter outputs  
of the general  magnitude observed during the  second period of the  
f l i g h t  descr ibed i n  Section IV.B.2 ( p .  10) .  For t h i s  same plasma 
densi ty ,  placing the  ove ra l l  meter po ten t i a l  pos i t i ve  with r e spec t  t o  
the plasma produced even l a rge  E-meter s igna l s  because of t he  higher 
mobil i ty  of the plasma e l ec t rons .  Increasing the  ion p a r t i c l e  cu r ren t  
dens i ty  t o  10-8 ampere per square centimeter w a s  s u f f i c i e n t  t o  d r ive  
the E-meter s i g n a l  i n t o  sa tu ra t ion  f o r  e i t h e r  pos i t i ve  or negative 
po ten t i a l s  of the  meter r e l a t i v e  t o  the plasma stream. 

u l t r a v i o l e t  r ad ia t ion .  
Hinteregger-type source operating i n  the  a l t e rna t ing -cu r ren t  mode 
with hydrogen gas a t  -10 Torr.  
hydrogen continuum with i t s  maximum energy i n  the range from 3000 
t o  1700 angstroms, with s t rong i l luminat ion i n  the s p e c t r a l  region 
between the  photoemission threshold f o r  gold and the  point  of maximum 
quantum y i e l d .  While the lamp does provide a s u b s t a n t i a l  u l t r a v i o l e t  
output,  it i s  not  i d e n t i c a l  t o  the  solar illuminance that w a s  present  
a t  the  vehic le  sur face  during the  SERT I f l i g h t .  This i s  not  of 
p r i n c i p a l  concern, however, s ince the photoemission of sur faces  i s  such 
an involved phenomenon and i s  so  c r i t i c a l l y  dependent on sur face  
condi t ions t h a t  the response of the  present E-meter may very w e l l  no t  
be the  same as t h a t  of the  f l i g h t  E-meter, even i f  the  two were exposed 
t o  i d e n t i c a l  u l t r a v i o l e t  spec t ra .  
under u l t r a v i o l e t  r a d i a t i o n  may be t e s t ed  though, and t h i s  was the  i n t e n t  
of the present  s e r i e s  of experiments. 

The instrument was placed in  a t'plasma wind tunnel"  as 

The f i n a l  s e r i e s  of t e s t s  examined the  meter s e n s i t i v i t y  t o  
The source of t h i s  u l t r a v i o l e t  l i g h t  was a 

The lamp provides a broad molecular 

The genera l  behavior of the E-meter 

The E-meter d id  exh ib i t  s e n s i t i v i t i e s  t o  the  u l t r a v i o l e t  r a d i a t i o n .  
These e f f e c t s  could be suppressed by placing s t rong  r e t a rd ing  p o t e n t i a l  
f i e l d s  on the  E-meter. The s igna l s  also diminished when s t rong  
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acce lera t ing  f i e l d s  were placed on the E-meter. 
the  behavior t o  be expected f o r  photoelectrons l i b e r a t e d  from a 
simple planar surface,  the  photoe lec t r ic  cur ren ts  from gridded 
s t ruc tu res  placed before s o l i d  backing s t ruc tu res  may be, as discussed 
i n  Section I V . B . l .  ( p .  8 ) ,  complicated funct ions of t he  f i e l d s  imposed 
on the  surfaces .  

While t h i s  i s  not  

A second t e s t  of the meter under u l t r a v i o l e t  l i g h t  u t i l i z e d  an 
O s r a m  H B O  200 mercury source with a s p e c t r a l  cu tof f  a t  -2500 
angstroms. The quanta here  a r e  of i n s u f f i c i e n t  energy t o  c rea t e  
photoelectrons,  but  they were capable of inducing shor t - l ived  
E-meter s igna ls  t h a t  may be in t e rp re t ed  as conkact p o t e n t i a l  s h i f t s .  

5.  E-Meter f l i g h t  data: discussion 

I n  the discussion of t he  E-meter data, the  approach w i l l  be t o  
consider a d e f i n i t e  model of t he  vehic le  i n - f l i g h t  condi t ion and t o  
examine the consistency of t h i s  model aga ins t  t he  observed E-meter 
s igna l s .  The model o be discussed i s  based on f i v e  s p e c i f i c  aspec ts  
i n  the  observed behavior of these neut ra l ized  ion beams: 

(1) The neu t r a l i ze r  i s  c lose ly  coupled t o  the  plasma i n  the 
pulsed beam t e s t s  i n  the  small chamber experiments, i n  which 
i s  only of the  order of a few v o l t s .  

Vp - VN 

( 2 )  There is invariance i n  t h e  coupling and i n  the  general  
plasma behavior f o r  increasing lengths  of the  plasma column as demon- 
s t r a t e d  i n  the 25-meter chamber t e s t s .  

(3 )  When per fec t  neu t r a l i za t ion  i s  assumed, the  i n - f l i g h t  
demonstration of measure t h r u s t  i s  within a few percent of t he  calcu- 
l a t e d  t h r u s t ,  which provides assurance t h a t  unusual behavior, i f  any, 
i n  the  vehicular environement produces only small per turba t ions .  

( 4 )  The measured a x i a l  p o t e n t i a l  decrements along the  ax is  of 
these th rus t  beams, a r e  small, being of the  order of a f e w  v o l t s  f o r  
w e l l  neut ra l ized  beams, and the  p o t e n t i a l s  diminish as they move 
downstream from the e l ec t ron  i n j e c t i o n  region.  

(5 )  The general  behavior i s  such t h a t  i n  the  region i n  which 
the  t h r u s t  beam plasma dens i ty  merges i n t o  the  ambient plasma the  only 
p o t e n t i a l  decrements t h a t  may be sus ta ined  a r e  of t h e  order  of a few 
kTe/e, where Te is  the  e l ec t ron  temperature. 
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This model leads t o  the  po ten t i a l s  sketched i n  Fig.  1 2 .  The p o t e n t i a l  
i n  t he  space plasma i s  chosen a s  the zero of t he  p o t e n t i a l  and is 
assumed t o  be everywhere constant .  

For the period before ion beam turn-on, t he  vehic le  has been placed 
a t  a small negative potn t i a l  t o  r e j e c t  the  bulk of the  e lec t rons  t h a t  
d i f fuse  t o  the sheath region surrounding the  vehic le .  This corresponds 
t o  period 1 i n  Section IV.B.2. ( p .  10) .  Af te r  ion beam turn-on, t h i s  
model would place the  vehic le  a t  a s l i g h t  pos i t i ve  p o t e n t i a l  i f  t he re  
i s  no b i a s  of the  neu t r a l i ze r  r e l a t i v e  t o  the  vehic le  sk in .  This 
corresponds t o  periods 2 and 4 of Section IV.B .2 .  The remaining 
period 3 ,  i n  which t h e  vehicle  sk in  was biased seve ra l  hundred v o l t s  
negative with respec t  t o  the neut ra l izer ,  i s  ind ica ted  i n  Fig. 1 2 ( c ) .  

The f i rs t  e f f e c t  t o  be in te rpre ted  i n  terms of t h i s  model i s  the  
surface f i e l d  s t rength ,  which i s  the  quant i ty  nominally measured by 
an E- f i e ld  meter. 
f i e l d ,  t h a t  s i g n a l  should be v i r t u a l l y  absent  i n  period 1, should be 
present  with a small amplitude and with poss ib le  spin-frequency var ia -  
€ions i n  periods 2 and 4, and should be l a r g e r  and e s s e n t i a l l y  s teady i n  
period 3 .  The observed data a r e  cons is ten t  with these  pred ic t ions  
i n  periods 1 and 3 ,  but  t he  l a rge  f luc tua t ing  s igna l s  observed i n  
periods 2 and 4 a r e  not  cons is ten t  with the  model i n  Fig.  1 2  if the  
s igna l s  a r e  t o  be generated by only surface e l e c t r i c  f i e l d s .  

If the  E-meter s igna l  were due t o  a surface e l e c t r i c  

The second e f f e c t  t o  be considered i n  terms of the  model is the  
generat ion of E-meter s igna l s  by p a r t i c l e  cur ren ts  from the  ambient 
plasma. I n  period 1, these s igna ls  should be small, as the  "passive" 
vehic le  i s  receiving equal ion and e lec t ron  cur ren ts  a t  t h i s  f l o a t i n g  
po ten t i a l .  I n  periods 2 and 4 the  co l l ec t ion  cur ren ts  should be 
(for t h e  most p a r t )  e lec t rons ,  should be sp in  dependent ( i n  genera l ) ,  
and should have a subs t an t i a l  magnitude compared t o  cur ren ts  of ions.  
These e l ec t ron  cur ren ts  should be la rger  i n  period 4 than i n  period 2 
because the  vehic le  i n  t h i s  l a t e r  period had returned t o  denser 
port ions of t he  ionosphere. I n  period 3 the  only co l l ec t ion  cur ren ts  
should be ions,  with a magnitude reduced considerably compared t o  
the  e l ec t ron  cur ren ts ,  and should be reasonably independent of t he  
vehic le  spin.  The predict ions of the model a r e  cons is ten t  with the 
observed E-meter s igna l s .  Further,  by a combination of p a r t i c l e  co l lec-  
t i o n  cur ren ts  and surface e l e c t r i c  f i e l d  e f f ec t s ,  the  E-meter 
behavior predicted by the  model i s  cons is ten t  with the observed E-meter 
s igna l s  i n  a l l  periods.  

The f i n a l  e f f e c t  t o  i n t e r p r e t  i n  terms of the  model i s  phoko- 
e l e c t r i c  cur ren ts  due t o  the  s o l a r  u l t r a v i o l e t .  If photocurrents 
were present  and were contr ibutors  t o  t he  E-meter s igna l s ,  these  con- 
t r i b u t i o n s  should be present  i n  periods 1 and 3 as a spin-dependent 
s i g n a l  and absent  i n  periods 2 and 4. The observed s igna ls  d i f fe r  from 



t h i s  predicted behavior i n  seve ra l  r e spec t s .  
be in te rpre ted  e i the r  as an inconsistency between the  s p e c i f i c  model 
and t h e  possible s o l a r  photoeffects ,  or as a port ion of a more general  
body of evidence from the  f l i g h t  data aga ins t  t he  influence of photo- 
cur ren ts .  The severa l  aspects  of t h i s  l a rge r  body of evidence aga ins t  
photoemission e f f e c t s  are as follows: 

This lack  of agreement can 

(1) An E-meter s i g n a l  i s  absent  i n  period 1. 

( 2 )  A spin-dependent s i g n a l  i s  absent i n  period 3. 

(3)  The growth of the  s i g n a l  i n  period 4 i s  from i ts  l e v e l  i n  
period 2 .  

( 4 )  The phase of the  E-meter s i g n a l  i s  r e l a t i v e  t o  the  s o l a r  de t ec to r .  

Apart from the  spec i f i c  model i n  Fig.  1 2 ,  it i s  d i f f i c u l t  t o  pos tu la te  
a pos i t ive  vehicle  p o t e n t i a l  f o r  periods 1 and 3. 
t r u e  of period 3. For negative vehic le  po ten t i a l s  photoelectrons a r e  
acce lera ted  away from the  surface,  and a photoe lec t r ic  e f f e c t ,  i f  
present ,  should be observable. Further ,  a photoeffect ,  i f  present ,  
should not be of increasing magnitude, s o  t h a t  photosignals i n  per iod 4 
should not d i f f e r  from those i n  period 2 .  F ina l ly ,  t h e  phase of t he  
E-meter s igna l  might be expected t o  have the  peak of t he  s i g n a l  when 
the  meter i s  facing the  sun. However, the  observed phase (F ig .  10) 
shows that the  peak of the  s i g n a l  occurs when the  E-meter i s  facing 
almost d i r e c t l y  away from the sun, and the  minimum occurs when the  
meter i s  facing the  sun ( t h e  discussion here  takes  i n t o  considerat ion 
the  phase lags  of -40' a t  the  1.5 cps frequency of the  vehic le  s p i n ) .  
A photoeffect with these phase r e l a t i o n s  can only be explained as being 
i n  addi t ion to ,  but  opposing, a l a rge r  s igna l .  

This i s  p a r t i c u l a r l y  

While the  severa l  aspects  l i s t e d  a r e  evidence aga ins t  photoe lec t r ic  
e f f e c t s ,  it should be emphasized t h a t  t h i s  discussion was based on photo- 
emission from a planar sur face .  
neighborhood of s o l i d  surfaces ,  the  poss ib le  exchange of photocurrents 
becomes s o  involved t h a t  no f i r m  conclusions may be made regarding 
these s igna l s .  The laboratory t e s t s ,  f o r  example, displayed photosignals 
only f o r  r e l a t i v e l y  weak e l e c t r i c  f i e l d s  upon the  E-meter sur faces .  
i s  possible,  thus, t h a t  photoeffects  do cont r ibu te  t o  the  o v e r a l l  
E-meter s igna l  i n  periods 2 and 4. 

For gridded surfaces  i n  the  near  

It 

I n  summary, the model: of Fig.  1 2  i s  cons is ten t  wi th  the  observed 
E-meter s igna ls  if it i s  assumed t h a t  these  s igna l s  r e s u l t  pr imari ly  
from p a r t i c l e  co l l ec t ion  cu r ren t s  i n  periods 2 and 4 (wi th  some possible  
photoeffects i n  these same per iods)  and pr imari ly  from sur face  e l e c t r i c  
f i e l d s  i n  periods 1 and 3. The response of the  meter i n  the  laboratory 
t e s t s  and the magnitude of the  p a r t i c l e  cur ren ts  t o  be expected a t  the  
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a l t i t u d e s  of the  f l i g h t  t e s t  a re ,  i n  turn, cons is ten t  with the  observed 
s igna l s .  

V . ADDITIONAL DIAGNOSTIC TECHNIQUES 

A .  Surface Field Measurements 

In  Sect ion N.B.l. (p .  8) ,  some of t he  l imi t a t ions  i n  sur face  
f i e l d  measurements f o r  ion engine diagnosis have been de ta i l ed .  The 
primary l i m i t a t i o n  is  t h a t  the  vehicle  p o t e n t i a l  and the  sur face  
e l e c t r i c  f i e l d  s t r eng th  are not simply r e l a t e d  i f  the vehic le  is  within 
the  d i l u t e  plasmas i n  t h e  near neighborhood of t he  Earth.  Addit ional  
complications r e s u l t  i f  the  vehic le  speed exceeds the  thermal v e l o c i t i e s  
of the ions i n  t h i s  ambient plasma. A t  g r ea t e r  a l t i t u d e s ,  the plasma 
dens i t i e s  diminish, ion thermal ve loc i t i e s  increase (because of the 
l i g h t e r  ion masses a t  these  a l t i t u d e s  ), vehic le  p o t e n t i a l  becomes 
more near ly  equal t o  
the  vehicle  sur face  f i e l d  becomes, i n  general ,  l e s s  subject  t o  environ- 
mental per turba t ions .  The operation o f  the  rotating-vane E-f ie ld  
meter, as a s p e c i f i c  technique f o r  determining the  surface f i e l d  
s t rength ,  i s  a l s o  l e s s  subject  i n  these higher a l t i t u d e  regions t o  the  
envirunmental e f f e c t s  of plasma p a r t i c l e  cur ren ts .  Solar  photoeffects  
and possible  contac t  po ten t i a l  s h i f t s  would remain as possible  perturba- 
t i ons  t o  the  rotating-vane meter. 

Esrs  ( f o r  a spher ica l  vehic le ) ,  and the  use of 

A second technique f o r  surface f i e l d  measurements i s  the  "button" 
These devices function by means of small emitted and type E-meters.15 

co l l ec t ed  cur ren ts  
a l s o  small (-0.1 cmz) so  that the  current  dens i ty  contr ibut ing t o  the  
meter s i g n a l  i s  l a rge  compared t o  apy background cur ren ts  due t o  
photoemission or p a r t i c l e  cur ren ts  from the  ambient plasma. As such, 
the  button E-meters a r e  less subjec t  t o  environmental per turba t ions .  

amps or l e s s ) ,  but  the  emitt ing a reas  are 

The sur face  f i e l d  measurement does not,  however, provide a d i r e c t  
determination of the  p o t e n t i a l  i n  the plasma t h r u s t  beam. 
though t h e  r e l a t i o n  between surface f i e l d  and vehicle  p o t e n t i a l  is a 
simple one f o r  t h e  d i s t a n t  regions of space, t h e  fu r the r  r e l axa t ion  
of the vehic le  sur face  f i e l d  t o  the  th rus t  beam po ten t i a l  may be q u i t e  
d i f f i c u l t  t o  make f o r  a vehicle  i n  the almost pe r f ec t  i s o l a t i o n  of t hese  
very d i l u t e  plasmas. Even fu r the r ,  the nature  of those remaining 
environmental f a c t o r s  is  uncertain,  because they are complicated by the  
behavior of the  s o l a r  winds and t h e i r  i n t e rac t ions  with the  magnetic 
f i e l d s  and ambient plasmas i n  the region i n  question. For these  seve ra l  
reasons,  other  diagnost ic  techniques t h a t  provide a d i r e c t  determination 
of t h r u s t  beam p o t e n t i a l  should be considered. 

Indeed, 
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B. Emissive Probe Measurements 

The plasma po ten t i a l  da ta  given i n  Fig.  2 were obtained with a con- 
vent ional  emissive probe technique with an accuracy of -0.5 v o l t  
i n  t h i s  appl icat ion.  
t i on ,  the accuracy of measurement i s  approximately 1 t o  2 v o l t s .  
probe su i t ab le  f o r  vehicular  use and u t i l i z i n g  a driven s h i e l d  cathode 
follower c i r c u i t  f o r  g rea t e r  frequency response i s  described i n  Ref. 16 .  
This emissive probe does provide a d i r e c t  measurement of the  p o t e n t i a l  
i n  the  plasma and possesses a bandwidth capable of de tec t ing  p o t e n t i a l  
f luc tua t ions ,  i f  these a r e  present  i n  the  vehicular  operat ion of an ion 
engine, of up t o  the hundred k i locyc le  range. Because the  probe requi res  
immersion i n  the plasma beam f o r  b e s t  operation, i t s  operat ing l i f e t ime  
i s  l imited unless  provisions a r e  made f o r  i t s  withdrawal and pro tec t ion  
except during sampling per iods.  

If the  probes a r e  operated i n  the  f l o a t i n g  condi- 
A 

One fu r the r  use of emissive probes is  the  determination of t he  
p o t e n t i a l  of vehicles  t h a t  a r e  s t i l l  within regions near t he  Earth.  
In  t h i s  configuration the  probe i s  immersed i n  the ambient plasma 
and measures the  po ten t i a l  of the  plasma r e l a t i v e  t o  the  vehic le .  
Special  considerations that apply t o  the  probe operat ion i n  these  
d i l u t e  plasmas a r e  discussed i n  Ref. 5 .  

VI. SUMMARY 
/ 

(The e f f ec t ive  neu t r a l i za t ion  of ion  t h r u s t  beams has been demon- 
s t r a t e a i n  both cont ro l led  laboratory experiments and i n  the  NASA 
SERT I space t e s t  of a mercury electron-bombardment ion th rus to r .  I n  
the  laboratory-&periments t h e  exhaust beam p o t e n t i a l  w a s  5 t o  10 
v o l t s  pos i t ive  with respec t  t o  the  n e u t r a l i z e r  depending on the  s p e c i f i c  
neut rd l izer  configurat ion.  The accuracy of t h i s  emissive probe measure- 
ment i s  -0.5 v o l g .  I n  the  SERT I space f l i g h t  -bestR>e measured t h r u s t  
agrees with the  ca lcu la ted  thrus t ,  assuming pe r fec t  neu t r a l i za t ion ,  
within 5 percent \ This demonstrates t h a t  t he  ions a t t a i n  the  acce lera-  
t i o n  energy they would achieve under pe r fec t  neu t r a l i za t ion  t o  within,  
a t  most, second-order e f f e c t s .  The absence of unusual behavior i n  t h e  
SERT I space f l i g h t  t e s t  as compared t o  $he laboratory t e s t  when 
properly conducted i s  assurance that cont ro l led  labora tory  t e s t s  of 
neu t r a l i za t ion  systems do provide an adequate examination of t h e  n e u t r a l i -  
zat ion process. 

2 

The diagnostic techniques by which the  ion beam t h r u s t  w a s  de te r -  
mined were not  subjec t  t o  any p a r t i c u l a r  per turba t ions  of the  vehicular  
environment. The evidence from the f l i g h t  data  and from t h e  subsequent 
laboratory t e s t s  of the  rotat ing-vane e l e c t r i c  f i e l d  s t r eng th  meter, 
however, has shown t h a t  environmental e f f e c t s  were cont r ibu t ing  f a c t o r s  
t o  the  s igna ls  from t h i s  instrument.  A second diagnost ic  technique f o r  
surface f i e l d  s t rength  beasurements, t he  E-meter button, should possess 
a reduced s e n s i t i v i t y  t o  environmental f a c t o r s  because of the  higher 
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cur ren t  dens i ty  condi t ion i n  the operation of the  meter. 

The i n t e r p r e t a t i o n  of vehicle  po ten t i a l  from the surface f i e l d  
s t r eng th  measurement requi res  s ign i f i can t  cor rec t ions  because of t he  
ambient plasma i n  the  near neighborhood of the  Earth.  
d i s t a n t  from t h e  Earth these per turbat ions should diminish. I n  both 
regions,  however, surface f i e l d  s t rength measurements do not provide 
a d i r e c t  determination of t he  po ten t i a l  i n  t he  t h r u s t  beam plasma and 
supplementary diagnost ic  techniques should be considered. Emissive 
probes possess a capab i l i t y  of measuring t h i s  exhaust beam p o t e n t i a l  
within a f r a c t i o n  of a v o l t  and of following any f luc tua t ions  i n  t h i s  
p o t e n t i a l  f o r  frequencies of up t o  -100 k i locyc le s .  The probes would 
require  withdrawal from the plasma column except f o r  the  measurement 
per iods.  

For regions more 
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Figure 2(a). - Emissive probe measurement of potential differ- 
ence between plasma and neutralizer as functions of radial 
probe position. Axial probe position is 70 inches downstream. 
F-type neutralizers are of folded-ribbon design used in SERT I 
thrustor. Numbers in parentheses are radial  and axial 
coordinates of position of neutralizer tip. 
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Figure 2(b). - Emissive probe measurements of potential differ- 
ence between plasma and neutralizer as function of position of 
the variable-position neutralizer. Probe position is on beam 
axis 70 inches downstream. F (var, 1) designates flight-type 
neutralizer of variable radial position; it is located 1 inch 
downstream from accelerator grid. 
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Figure 4. - View through "bell-jar" section into interior of testing chamber. 
Downstream probe packages a r e  mounted a t  the end of booms, which are swung 
from side ports. In the foreground center is the source mounting plate. 



Figure 5.  - Free flight configuration of the SERT I spacecraft. 
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Figure 6. - Flight test measurements of thrust determine ion 
acceleration velocity [2e(V0 - Vp)/M+] ' I2  from which 
V, - V is derived. Laboratory plasma potential measure- 
ments determine Vp - VN.  
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Figure 7. - Sketch of vehicle sheath configuration for f f smal l f f  
and f f la rgefT vehicle potentials. 
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Figure 8. - Possible photoelectric currents f rom 
solid and gridded stator vanes for positive and 
negative vehicle potentials. Strongly positive 
potentials a r e  indicated ++. 
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Figure 9. - E-field meter signals during periods 1 to 4 of SERT I space flight test. One horizontal division 
equals 1 second. 
launch. Data in period 2 are at approximately 20 minutes after launch. 

Full scale i s  10 vertical divisions. Indicated times in period 4 are measured from 
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Figure 12. - Model of potential configu- 
ration during flight test. Plasma 
thrust beam is indicated by the curve 
from the dot outward to the potential 
of the ambient plasma (V = 0). Vehicle 
potential V, is indicated by the short 
horizontal bar. 
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